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Anomalous relaxation and self-organization in nonequilibrium processes
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We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find
that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of
relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and
slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in
different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation
without explicit disorder or frustration.
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The world around us is full of nonequilibrium and non- ics in proteins, yeast phosphoglycerate kingB&K), and
stationary processes, many of which are robust and easy taiquitin mutant[7]. These proteins fold according to a
measure. However, there is agoriori reason to believe that “downbhill folding” scenario [18], meaning that the folding
these nonequilibrium processes should fulfill universal lawgath between the unfolded and folded states is free of deep
in the way that equilibrium systems fulfill laws of thermody- metastable minima, so the process of folding is “downhill”
namics and statistical mechanics. It is, therefore, important teelaxation along this path. Nevertheless, the number of
recognize examples of complex nonequilibrium processefolded proteins, as a function of time, displays stretched-
organizing themselves in a simple and universal way, a pheaxponential behavior over a large time inter{/a).
nomenon termed “self-organization” or “emergent behav- |n this paper we present a simple minimal model that is
ior” [1,2]. Kolmogorov turbulencé3] is an example of such ransiationally invariant andithoutdisorder or explicit frus-

a nonequilibrium process: Liquid, forced at macroscopiCiyation[19], which displays perfect stretched-exponential re-
length scales produces a flow of energy from large 0 smallyya4ion over wide time intervals. The stretched exponent

length scales and this flow organizes itself into a stationar)éh(,mgeS continuously from slow relaxatian<1 to fast re-

unl\{grsal dIStI‘IbutIOFT. Turbulence is a sFeady, though NON{axation 1<a<2 as parameters of the system vary. We
equilibrium, process; the flow of energy is constant and the

resulting self-organized probability distribution does not'dentlfy dynamic ;elf-orgam;aﬂoras the ‘origin of the
change in time. It is important to establish, whether boung Stretched-exponential relaxation and show that slow and fast

aries of self-organization can be expanded to include nonf€/@xation are caused kanticooperativeandcooperativebe-
equilibrium and nonstationary processes. In this paper wdavior, respectively. We provide a theoretical explanation of
show thatdynamic self-organizationan indeed be found in the ngrete and contlm_Jous limiting cases. We al_so present a
relaxational dynamics of extended systems and is manifestedialitative theory, which accounts for behavior of the
in stretched-exponential dependence on time of physicaitretched exponent in the intermediate range of parameters.
quantities. Real life system$4—9] are much more complex than our
Stretched-exponential>exd — (t/t,,)*]) relaxation laws simple model. However, we conjecture that at least one un-
have been observed in a large variety of physical and bioderlying reason for stretched-exponential relaxation is uni-
logical processes, such as recombination of carriers in semyersal. Namely self-organization with fast and slow relax-
conductors and polymeist,5], protein relaxation6], and  ation corresponds to cooperative and anticooperative
folding [7,8], ligand binding to myoglobi9,10], relaxation  behavior. We suggest that proteins belong to the anticoop-
in magnetic clusterfl1], superconducting vorticdd2] and  erative universality class. Our argument is, that initially the
charge density waved 3,14, dynamics of alloyg§15], and  protein is loose and deforms easily. When folding into a
glasse$16]. In the case of glasses, the stretching expoment particular local pattern occurs, this part becomes stiff, mak-
defines a glass transition temperatdrg, i.e., a=1for T ing folding of neighboring parts more difficult, and therefore
>Ty, and@<1 for T<T4. The nonexponential dynamics behaving in an anticooperative way. Similar anticooperative
of glasses has long been related to the high degree of disdpehavior occurs in our model system for negative values of
der, which leads to the existence of a large number of metahe coupling as we discuss below.
stable statefl7]. Let us now specify the model. We consider a chain of
Observations of nonexponential behavior in simpler syshonlinear bistable elements. Each element is described by the
tems, such as magnetic clustgtd] and proteing6,7], sug-  order parameteu,,. The local energ¥(u) has two minima,
gests that a high degree of disordernist a necessary re- one of which is a metastable statecal minimum of en-
quirement for a system to display anomalous relaxationergy), the other one is the absolutely stable stathsolute
Especially notable are recent observations of folding dynamminimum of energy. We assume overdamped dynamics of
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u, in the presence of delta-correlated thermal noise. Equa-
tions of motion of the system are 10

Uy stc
W:B(un+l+un—1_2un)+F(un)+fn . (1)

Here B represents linear coupling of neighboring sites, 05 |
F(u)=—-dE/du=—u(u—ug)(u—1) is a forcing term, cor-
responding to the bistable polynomial potenti&(u)
= (1/4)u*— (1/3) (ug+ 1)u®+ (1/2)uu?. The potential has
two minima,u=0 andu=1, separated by a barrier=uj.
At ug=1/2 the minima have equal energy. Rgy<1/2 the 0.0 , , , ,
minimum u=1 becomes absolutely stable amd=0 be- o t 100 200
comes metastable, with energy difference given bk 0 t
=1/12—1/6u,. The stochastic terri S is given by a delta-
correlated Langevin force

simulations
o-——o str. exponent

FIG. 1. Plot of a typical functiom(t). Solid line represents the
result of numerical simulations. Dashed line is a stretched-

(f stc(t ) stc(t )) =T Smnd(ty—t) ) exponential fit. Parameters afe=0.01, uy=0.35, 3=0.04.

n im \t2)/— mn 1 2)s

whereT defines the temperature in our systg2f]. Equation (i) The stretched exponent changes continuously as
(1) can be viewed as a discrete one-dimensional Ginzburgceemperaturel and coupling vary, see Figs. 2 and 3. The
Landau equation with noise. observed relaxation is fast(>1) for positive values of3

Let us first review equilibrium properties of our system. and slow @<1) for negative values g8. As temperaturd
At T=0 the system is in the absolutely stable phase. Wheis increased, the stretched exponemt approaches the
temperature is introduced, sort@mal) number of particles  Arrhenius law = 1), corresponding to the intrinsic frustra-
overcome the barrier because of equilibrium thermal fluctuation being overcome thermally.
tions. The relative number of particles in the metastable (jii) The stretched exponent approaches the value
phase is determined by Boltzmann statistics and is exponen=2 in the continuous limit of largg, representing a binary
tially small for temperatures much less than the energy difrelaxation channel.
ference between potential wells. The dependence af on g is given in Fig. 2. At zerg3

Our goal is to study the nonequilibrium and nonstationarythe system represents a set of uncoupled nonlinear sites.
process of relaxation from the metastable phase to the absgach site is described by a one-dimensional Fokker-Planck
lutely stable phase. We assume that all sites are initially irequation. In this case relaxation is known to be described by
the metastable phase and then introduce the thermal noisga exponentialArrheniug law, with decay time determined
Due to fluctuations, particles start to overcome the barriepy the lowest excited state of the Fokker-Planck operator
and the number of particles in the absolutely stable phasgq]. Therefore, for3=0 one hasx=1.
increases. We monitor relaxation by introducing the function et us now explain, why introducing positiveegativé 8
n(t)=N(t)/No(T), which describes the ratio between the corresponds to cooperativanticooperative behavior. If 8

concentration of particles in the absolutely stable phase g§ positive, one may think of the intersite couplifigas an
time t and their equilibrium numbeNy(T). In the thermo-

dynamic limit of infinite chain lengthn(t) is a well-defined
smooth function, which satisfies the conditian®)=0 and
n(e)=1.

We study relaxation numerically by integrating the
Langevin equation$l) defined on long chain segmentd ( 15
=200) and averaging the resulting functiand) over many
noise realizations. To improve numerical convergence, we o
use an implicit integration scheme. Details of the numerical
method will be reported elsewhef21]. 10 |

A typical functionn(t) is given in Fig. 1. Important glo-
bal features of the relaxation, valid in all ranges of param-
eters, areas follows.

(i) After a short transient time, (Fig. 1), the system
self-organizes andn(t) starts to obey the stretched-
exponential formn(t)=1—exd —(t/t,o)“]. Note, that there
are only two parameters in our fit, which are the stretched F|G. 2. Stretched exponentas a function of intersite coupling
exponentx and the relaxation timg,, . The precision of the g for u, and T same as in Fig. 1. Propagation failure bifurcation
stretched-exponential fitis extremely high and is about 0.1%nd one-site nucleus bifurcation are marked3asand 8,, respec-
for t>t,. tively.
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1’%.00 0.01 0.02 0.03 0.04 0.05 FIG. 4. New phase nucleation through birth and propagation of
kink-antikink pairs(schematit
FIG. 3. Stretched exponentas a function of temperatufefor . ) .
three different values of, above, below, and at the propagation clude that in thg continuous .I|m|t the_stretched exponent
failure bifurcation point. Parameters areu,=0.35, B = 2. Ournumerical datésee Fig. 2are in a good agreement
=0.03,0.043,0.06. Other parameters are the same as in Fig. 1. With this prediction.

The fact that the stretched exponent 2 in the continu-
elastic chain connecting neighboring siteendn+1. If a ~ Ous case is striking and has important consequences.
particle overcomes the barrier, it attracts its neighbors anflamely,space discreteness is necessary to observe continu-
makes it, therefore, easier for them to jump over the barrierous dependence ef on parametersWe can rephrase this
Contrary to this, negative coupling corresponds to a repulstatement as follows. It is known, that critical properties of
sive force, which makes relaxation of nearest neighbors moréquilibrium systems are described by continuous models and
difficult. (Indeed in the limit of large negativg, our model ~these models can be organized into universality classes, such
produces a strong staggered dimerization of the laftioé that each universality cla_ss has a set of L_mlversal critical
conclude from Fig. 2 that the cooperative behavior leads t@Xponent§23,24. We conjecture, that effective models for
fast relaxationa>1, and anticooperative behavior leads to nonequilibrium, nonstationary self-organization, in particular
slow relaxationa<1. relaxation, must include discreteness in order to incorporate

We will now discuss the behavior of the stretched expo-the continuous dependence of stretched exponents on param-
nenta at large positive3. In this limit the system becomes ©ters.

continuous and is described by the continuous Ginzburg- L€t us now consider the nontrivial dependence of the
Landau equation, stretched exponent on the coupling8 and temperaturéd,

for the intermediate values ¢, given in Figs. 2 and 3a

au 2u more detailed discussion of these effects will be given in

— =B—+F(u)+f(x,t)%e ©) [21]). In the absence of noise, the topological excitations of

Jt S system(1) undergo a sequence of bifurcations as described

in [22,25,28. The most important of these bifurcations is the

In the absence of thermal noise, topological excitations opropagation failure bifurcation at which fronts cease to
this equation are front&inks), which separate the absolutely propagate, being pinned by the lattice. We denote the corre-
stable and metastable phases. Due to the energy differensponding value of the coupling as 8.. An analytical ex-
between the phases, the fronts propagate at finite velocity pression for3. was derived by us ifi26]. The second im-
increasing the size of the absolutely stable phase. When terportant bifurcation point isg,. At this point, a one-site
perature is introduced, local fluctuations of the order paramnucleus of the globally stable phase, representing a bound
eter give birth to kink-antikink pairgFig. 4). These pairs state of a kink and antikink pair, becomes unstable and
counter propagate, replacing the metastable phase by the atbursts” into counter-propagating kink and antikink. [&5]
solutely stable one. Let us now estimate the probability forwe have shown, that there exist an infinite number of bifur-
the order parameter(0,t) atx=0 to stay in the metastable cation points3,, such that3.<---<B,<Bn_1=' - <p1,
phase after timé This probability is approximately equal to corresponding to the instabilities of a one-site, two-site,
the probabilityP(t,l) that no kink-antikink pair will be cre- three-site, etc. nuclei. In Fig. 2 we see the corresponding
ated by fluctuations during tinteat a distancé<wvt fromthe  change of shape in the coupling-dependence of the stretched
origin. If such a pair is created, then the newly born kink hasexponenta in the interval 3.< 8< ;. Accordingly, Fig. 3
enough time to reack=0 before the time intervelelapses demonstrates a transition in the temperature dependence of
and annihilate the metastable phase, see Fig. 4. Since flua, with 8 crossings.. We conclude from Figs. 2 and 3 that
tuations are local, one can estima®l,t) as exp{lt/»), this region of bifurcations is manifested as a characteristic
where 7 is a constant. Therefore, the probability to stay infeature of the nonequilibrium relaxation of the system.
the metastable phase after time is approximately In conclusion, we have introduced a model of dynamic
exp(—vt¥7). Since the number of particles in the metastableself-organization and conjectured that it should be applicable
phase after timeis proportional to this probability, we con- to stretched-exponential relaxation in many biological and
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physical systems. We studied properties of self-organizationection for future study. This will include extensions to
in a simple model and showed that féstow) relaxation is  higher dimensions as well as specific physical models. We
related to cooperative(anticooperative behavior. We also note that stretched exponents were also observed in
showed, that neither explicit disorder nor frustration are necequilibrium correlation functiong27] and it is important to
essary requirements for anomalous relaxation laws. In viewinderstand whether they can be related to their nonequilib-
of this, an experimental evidence of anomalous relaxation ifium counterparts.

a physical system should not be considered as automatic

proof of disorder or frustration in the system. Appropriate We thank R. B. Laughlin for fruitful discussions and for
nonlinearity (arising, for example, from coupled degrees of sharing his views on self-organization in nonequilibrium pro-
freedom with feedbagkcan alone produce both the ingredi- cesses. We are also grateful to J. Pearson for his valuable
ents of local structureg§‘intrinsic disorder”) and competi- comments. This work was supported in péftK.) by the

tion (of length scales leading to a distribution of metastable Otto Hahn Fellowship of the Max Planck Society, Germany.
states and anomalous dynamj&g]. The detailed analytical Work at Los Alamos was supported by the U.S. DOE under
description of dynamic self-organization is a promising di- Contract No. W-7405-ENG-36.
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