
PHYSICAL REVIEW E, VOLUME 63, 067102
Anomalous relaxation and self-organization in nonequilibrium processes
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We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find
that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of
relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and
slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in
different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation
without explicit disorder or frustration.
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The world around us is full of nonequilibrium and no
stationary processes, many of which are robust and eas
measure. However, there is noa priori reason to believe tha
these nonequilibrium processes should fulfill universal la
in the way that equilibrium systems fulfill laws of thermod
namics and statistical mechanics. It is, therefore, importan
recognize examples of complex nonequilibrium proces
organizing themselves in a simple and universal way, a p
nomenon termed ‘‘self-organization’’ or ‘‘emergent beha
ior’’ @1,2#. Kolmogorov turbulence@3# is an example of such
a nonequilibrium process: Liquid, forced at macrosco
length scales produces a flow of energy from large to sm
length scales and this flow organizes itself into a station
universal distribution. Turbulence is a steady, though n
equilibrium, process; the flow of energy is constant and
resulting self-organized probability distribution does n
change in time. It is important to establish, whether bou
aries of self-organization can be expanded to include n
equilibrium and nonstationary processes. In this paper
show thatdynamic self-organizationcan indeed be found in
relaxational dynamics of extended systems and is manife
in stretched-exponential dependence on time of phys
quantities.

Stretched-exponential„}exp@2(t/trel)
a#… relaxation laws

have been observed in a large variety of physical and
logical processes, such as recombination of carriers in se
conductors and polymers@4,5#, protein relaxation@6#, and
folding @7,8#, ligand binding to myoglobin@9,10#, relaxation
in magnetic clusters@11#, superconducting vortices@12# and
charge density waves@13,14#, dynamics of alloys@15#, and
glasses@16#. In the case of glasses, the stretching exponena
defines a glass transition temperatureTg , i.e., a51for T
.Tg , and a,1 for T,Tg . The nonexponential dynamic
of glasses has long been related to the high degree of d
der, which leads to the existence of a large number of m
stable states@17#.

Observations of nonexponential behavior in simpler s
tems, such as magnetic clusters@11# and proteins@6,7#, sug-
gests that a high degree of disorder isnot a necessary re
quirement for a system to display anomalous relaxati
Especially notable are recent observations of folding dyna
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ics in proteins, yeast phosphoglycerate kinase~PGK!, and
ubiquitin mutant @7#. These proteins fold according to
‘‘downhill folding’’ scenario @18#, meaning that the folding
path between the unfolded and folded states is free of d
metastable minima, so the process of folding is ‘‘downhil
relaxation along this path. Nevertheless, the number
folded proteins, as a function of time, displays stretch
exponential behavior over a large time interval@7#.

In this paper we present a simple minimal model that
translationally invariant andwithoutdisorder or explicit frus-
tration @19#, which displays perfect stretched-exponential
laxation over wide time intervals. The stretched exponena
changes continuously from slow relaxationa,1 to fast re-
laxation 1<a<2 as parameters of the system vary. W
identify dynamic self-organizationas the origin of the
stretched-exponential relaxation and show that slow and
relaxation are caused byanticooperativeandcooperativebe-
havior, respectively. We provide a theoretical explanation
the discrete and continuous limiting cases. We also prese
qualitative theory, which accounts for behavior of th
stretched exponent in the intermediate range of paramet

Real life systems@4–9# are much more complex than ou
simple model. However, we conjecture that at least one
derlying reason for stretched-exponential relaxation is u
versal. Namely,self-organization, with fast and slow relax-
ation corresponds to cooperative and anticoopera
behavior. We suggest that proteins belong to the antico
erative universality class. Our argument is, that initially t
protein is loose and deforms easily. When folding into
particular local pattern occurs, this part becomes stiff, m
ing folding of neighboring parts more difficult, and therefo
behaving in an anticooperative way. Similar anticooperat
behavior occurs in our model system for negative values
the coupling as we discuss below.

Let us now specify the model. We consider a chain
nonlinear bistable elements. Each element is described by
order parameterun . The local energyE(u) has two minima,
one of which is a metastable state~local minimum of en-
ergy!, the other one is the absolutely stable state~absolute
minimum of energy!. We assume overdamped dynamics
©2001 The American Physical Society02-1
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un in the presence of delta-correlated thermal noise. Eq
tions of motion of the system are

]un

]t
5b~un111un2122un!1F~un!1 f n

stc. ~1!

Here b represents linear coupling of neighboring site
F(u)52dE/du52u(u2u0)(u21) is a forcing term, cor-
responding to the bistable polynomial potentialE(u)
5(1/4)u42(1/3)(u011)u31(1/2)u0u2. The potential has
two minima,u50 andu51, separated by a barrieru5u0.
At u051/2 the minima have equal energy. Foru0,1/2 the
minimum u51 becomes absolutely stable andu50 be-
comes metastable, with energy difference given byDE
51/1221/6u0. The stochastic termf stc is given by a delta-
correlated Langevin force

^ f n
stc~ t1! f m

stc~ t2!&5Tdmnd~ t12t2!, ~2!

whereT defines the temperature in our system@20#. Equation
~1! can be viewed as a discrete one-dimensional Ginzb
Landau equation with noise.

Let us first review equilibrium properties of our system
At T50 the system is in the absolutely stable phase. W
temperature is introduced, some~small! number of particles
overcome the barrier because of equilibrium thermal fluct
tions. The relative number of particles in the metasta
phase is determined by Boltzmann statistics and is expo
tially small for temperatures much less than the energy
ference between potential wells.

Our goal is to study the nonequilibrium and nonstation
process of relaxation from the metastable phase to the a
lutely stable phase. We assume that all sites are initially
the metastable phase and then introduce the thermal n
Due to fluctuations, particles start to overcome the bar
and the number of particles in the absolutely stable ph
increases. We monitor relaxation by introducing the funct
n(t)5N(t)/N0(T), which describes the ratio between th
concentration of particles in the absolutely stable phas
time t and their equilibrium numberN0(T). In the thermo-
dynamic limit of infinite chain length,n(t) is a well-defined
smooth function, which satisfies the conditionsn(0)50 and
n(`)51.

We study relaxation numerically by integrating th
Langevin equations~1! defined on long chain segments (N
5200) and averaging the resulting functionsn(t) over many
noise realizations. To improve numerical convergence,
use an implicit integration scheme. Details of the numeri
method will be reported elsewhere@21#.

A typical functionn(t) is given in Fig. 1. Important glo-
bal features of the relaxation, valid in all ranges of para
eters, areas follows.

~i! After a short transient timet0 ~Fig. 1!, the system
self-organizes andn(t) starts to obey the stretched
exponential formn(t)512exp@2(t/trel)

a#. Note, that there
are only two parameters in our fit, which are the stretch
exponenta and the relaxation timet rel . The precision of the
stretched-exponential fit is extremely high and is about 0.
for t.t0.
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~ii ! The stretched exponenta changes continuously a
temperatureT and couplingb vary, see Figs. 2 and 3. Th
observed relaxation is fast (a.1) for positive values ofb
and slow (a,1) for negative values ofb. As temperatureT
is increased, the stretched exponenta approaches the
Arrhenius law (a51), corresponding to the intrinsic frustra
tion being overcome thermally.

~iii ! The stretched exponenta approaches the valuea
52 in the continuous limit of largeb, representing a binary
relaxation channel.

The dependence ofa on b is given in Fig. 2. At zerob
the system represents a set of uncoupled nonlinear s
Each site is described by a one-dimensional Fokker-Pla
equation. In this case relaxation is known to be described
an exponential~Arrhenius! law, with decay time determined
by the lowest excited state of the Fokker-Planck opera
@20#. Therefore, forb50 one hasa51.

Let us now explain, why introducing positive~negative! b
corresponds to cooperative~anticooperative! behavior. If b
is positive, one may think of the intersite couplingb as an

FIG. 1. Plot of a typical functionn(t). Solid line represents the
result of numerical simulations. Dashed line is a stretch
exponential fit. Parameters areT50.01, u050.35, b50.04.

FIG. 2. Stretched exponenta as a function of intersite coupling
b for u0 and T same as in Fig. 1. Propagation failure bifurcatio
and one-site nucleus bifurcation are marked asbc andb1, respec-
tively.
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BRIEF REPORTS PHYSICAL REVIEW E 63 067102
elastic chain connecting neighboring sitesn and n11. If a
particle overcomes the barrier, it attracts its neighbors
makes it, therefore, easier for them to jump over the barr
Contrary to this, negative coupling corresponds to a rep
sive force, which makes relaxation of nearest neighbors m
difficult. ~Indeed in the limit of large negativeb, our model
produces a strong staggered dimerization of the lattice.! We
conclude from Fig. 2 that the cooperative behavior leads
fast relaxation,a.1, and anticooperative behavior leads
slow relaxation,a,1.

We will now discuss the behavior of the stretched exp
nenta at large positiveb. In this limit the system become
continuous and is described by the continuous Ginzbu
Landau equation,

]u

]t
5b

]2u

]x2
1F~u!1 f ~x,t !stc. ~3!

In the absence of thermal noise, topological excitations
this equation are fronts~kinks!, which separate the absolute
stable and metastable phases. Due to the energy differ
between the phases, the fronts propagate at finite velocitv,
increasing the size of the absolutely stable phase. When
perature is introduced, local fluctuations of the order para
eter give birth to kink-antikink pairs~Fig. 4!. These pairs
counter propagate, replacing the metastable phase by th
solutely stable one. Let us now estimate the probability
the order parameteru(0,t) at x50 to stay in the metastabl
phase after timet. This probability is approximately equal t
the probabilityP(t,l ) that no kink-antikink pair will be cre-
ated by fluctuations during timet at a distancel &vt from the
origin. If such a pair is created, then the newly born kink h
enough time to reachx50 before the time intervalt elapses
and annihilate the metastable phase, see Fig. 4. Since
tuations are local, one can estimateP( l ,t) as exp(2lt/h),
whereh is a constant. Therefore, the probability to stay
the metastable phase after timet is approximately
exp(2vt2/h). Since the number of particles in the metasta
phase after timet is proportional to this probability, we con

FIG. 3. Stretched exponenta as a function of temperatureT for
three different values ofb, above, below, and at the propagatio
failure bifurcation point. Parameters areu050.35, b
50.03,0.043,0.06. Other parameters are the same as in Fig. 1
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clude that in the continuous limit the stretched exponena
52. Our numerical data~see Fig. 2! are in a good agreemen
with this prediction.

The fact that the stretched exponenta52 in the continu-
ous case is striking and has important consequen
Namely,space discreteness is necessary to observe con
ous dependence ofa on parameters. We can rephrase this
statement as follows. It is known, that critical properties
equilibrium systems are described by continuous models
these models can be organized into universality classes,
that each universality class has a set of universal crit
exponents@23,24#. We conjecture, that effective models fo
nonequilibrium, nonstationary self-organization, in particu
relaxation, must include discreteness in order to incorpo
the continuous dependence of stretched exponents on pa
eters.

Let us now consider the nontrivial dependence of
stretched exponenta on the couplingb and temperatureT,
for the intermediate values ofb, given in Figs. 2 and 3~a
more detailed discussion of these effects will be given
@21#!. In the absence of noise, the topological excitations
system~1! undergo a sequence of bifurcations as descri
in @22,25,26#. The most important of these bifurcations is th
propagation failure bifurcation at which fronts cease
propagate, being pinned by the lattice. We denote the co
sponding value of the couplingb as bc . An analytical ex-
pression forbc was derived by us in@26#. The second im-
portant bifurcation point isb1. At this point, a one-site
nucleus of the globally stable phase, representing a bo
state of a kink and antikink pair, becomes unstable a
‘‘bursts’’ into counter-propagating kink and antikink. In@25#
we have shown, that there exist an infinite number of bif
cation pointsbn , such thatbc<•••<bn<bn21<•••<b1,
corresponding to the instabilities of a one-site, two-s
three-site, etc. nuclei. In Fig. 2 we see the correspond
change of shape in the coupling-dependence of the stret
exponenta in the intervalbc,b,b1. Accordingly, Fig. 3
demonstrates a transition in the temperature dependenc
a, with b crossingbc . We conclude from Figs. 2 and 3 tha
this region of bifurcations is manifested as a characteri
feature of the nonequilibrium relaxation of the system.

In conclusion, we have introduced a model of dynam
self-organization and conjectured that it should be applica
to stretched-exponential relaxation in many biological a

FIG. 4. New phase nucleation through birth and propagation
kink-antikink pairs~schematic!.
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physical systems. We studied properties of self-organiza
in a simple model and showed that fast~slow! relaxation is
related to cooperative~anticooperative! behavior. We
showed, that neither explicit disorder nor frustration are n
essary requirements for anomalous relaxation laws. In v
of this, an experimental evidence of anomalous relaxatio
a physical system should not be considered as autom
proof of disorder or frustration in the system. Appropria
nonlinearity~arising, for example, from coupled degrees
freedom with feedback! can alone produce both the ingred
ents of local structures~‘‘intrinsic disorder’’! and competi-
tion ~of length scales!, leading to a distribution of metastab
states and anomalous dynamics@19#. The detailed analytica
description of dynamic self-organization is a promising
P
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rection for future study. This will include extensions
higher dimensions as well as specific physical models.
also note that stretched exponents were also observe
equilibrium correlation functions@27# and it is important to
understand whether they can be related to their nonequ
rium counterparts.
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